Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 757: 143168, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33143914

RESUMO

This study presents a comparison of five methodologies to apportion primary (POA) and secondary organic aerosol (SOA) sources from measurements performed in the Paris region (France) during a highly processed PM pollution event. POA fractions, estimated from EC-tracer method and positive matrix factorization (PMF) analyses, conducted on measurements from PM10 filters, aerosol chemical speciation monitor (ACSM) and offline aerosol mass spectrometry (AMS), were all comparable (2.2-3.7 µg m-3 as primary organic carbon (POC)). Associated relative uncertainties (measurement + model) on POC estimations ranged from 8 to 50%. The best apportionment of primary traffic OA was achieved using key markers (EC and 1-nitropyrene) in the chemical speciation-based PMF showing more pronounced rush-hour peaks and greater correlation with NOx than other traffic related POC factors. All biomass burning-related factors were in good agreement, with a typical diel profile and a night-time increase linked to residential heating. If PMF applied to ACSM data showed good agreement with other PMF outputs corrected from dust-related factors (coarse PM), discrepancies were observed between individual POA factors (traffic, biomass burning) and directly comparable SOA factors and highly oxidized OA. Similar secondary organic carbon (SOC) concentrations (3.3 ± 0.1 µg m-3) were obtained from all approaches, except the SOA-tracer method (1.8 µg m-3). Associated uncertainties ranged from 14 to 52% with larger uncertainties obtained for PMF-chemical data, EC- and SOA-tracer methods. This latter significantly underestimated total SOA loadings, even including biomass burning SOA, due to missing SOA classes and precursors. None of the approaches was able to identify the formation mechanisms and/or precursors responsible for the highly oxidized SOA fraction associated with nitrate- and/or sulfate-rich aerosols (35% of OA). We recommend the use of a combination of different methodologies to apportion the POC/SOC concentrations/contributions to get the highest level of confidence in the estimates obtained.

2.
Sci Adv ; 6(11): eaax8922, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32201715

RESUMO

Highly oxygenated organic molecules (HOMs) are formed from the oxidation of biogenic and anthropogenic gases and affect Earth's climate and air quality by their key role in particle formation and growth. While the formation of these molecules in the gas phase has been extensively studied, the complexity of organic aerosol (OA) and lack of suitable measurement techniques have hindered the investigation of their fate post-condensation, although further reactions have been proposed. We report here novel real-time measurements of these species in the particle phase, achieved using our recently developed extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). Our results reveal that condensed-phase reactions rapidly alter OA composition and the contribution of HOMs to the particle mass. In consequence, the atmospheric fate of HOMs cannot be described solely in terms of volatility, but particle-phase reactions must be considered to describe HOM effects on the overall particle life cycle and global carbon budget.

3.
Water Res ; 159: 122-134, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31082643

RESUMO

This study aims at testing the effectiveness of Positive Matrix Factorization in characterizing groundwater and surface water quality, in terms of identifying main hydrochemical features and processes (natural and anthropogenic) that govern them. This method is applied in a hydro-system featured by a strong interrelation between groundwater and surface water and highly impacted by agricultural activities. Therefore, a holistic approach considering groundwater together with the surface water bodies, consisting in lake, several rivers and springs, was used. Multivariate statistical analysis, in particular Factor Analysis, has been proved to be effective in elaborating and interpreting water quality data highlighting the information carried within them, but it presents some limitations: it does not consider data uncertainty and it groups variables which are correlated positively and negatively. Moreover, in some cases the resulting factors are not clearly interpretable, describing each one various overlapping features/processes. Here, Positive Matrix Factorization is applied to groundwater and surface water quality data, and the results are compared to those obtained through a Factor Analysis in terms of both factor profiles and their spatial distribution through a GIS approach. Results of isotopes analysis are used to validate PMF output and support interpretation. Positive Matrix Factorization allows to consider data uncertainty and the solution respects two positivity constraints, based on the concept of chemical mass balance, which leads to a more environmentally interpretable solution. Results show that Positive Matrix Factorization identifies five different factors reflecting main features and natural and anthropogenic processes affecting the study area: 1) surface water used for irrigation, 2) groundwater subjected to reducing processes at advanced stages, 3) groundwater subjected to reducing processes at early stages, 4) groundwater residence time and 5) the effects of the agricultural land use on both groundwater and surface water. Positive Matrix Factorization leads to a more detailed understanding of the studied system as compared to Factor Analysis which identifies only three factors with overlapping information. Based on the results of this study, Positive Matrix Factorization could be a useful technique to perform groundwater and surface water quality characterization and to reach a deeper understanding of the phenomena that govern water chemistry.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Sistemas de Informação Geográfica , Rios , Qualidade da Água
4.
Sci Total Environ ; 669: 213-228, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30878930

RESUMO

Saharan air masses can transport high amounts of mineral dust particles and biological material to the Iberian Peninsula. During winter, this kind of events is not very frequent and usually does not reach the northwest of the Peninsula. However, between 21 and 22 February 2016 and between 22 and 23 February 2017, two exceptional events were registered in León (Spain), which severely affected air quality. An integrative approach including: i) typical synoptic conditions; ii) aerosol chemical composition; iii) particle size distributions; iv) pollen concentration; v) aerosol optical depth (AOD); vi) radiative forcing and vii) estimation of the impact of aerosols in the respiratory tract, was carried out. In the global characterization of these events, the exceedance of the PM10 daily limit value, an increase in the coarse mode and a rise in the iron concentration were observed. On the 2016 event, an AOD and extinction-related Ångström exponent clearly characteristic of desert aerosol (1.1 and 0.05, respectively) were registered. Furthermore, pollen grains not typical of flowering plants in this period were identified. The chemical analysis of the aerosol from the 2017 event allowed us to confirm the presence of the main elements associated with mineral sources (aluminum, calcium, and silica concentrations). An increase in the SO42-, NO3- and Cl- concentrations during the Saharan dust intrusion was also noted. However, in this event, there was no presence of atypical pollen types. The estimated dust radiative forcing traduced a cooling effect for surface and atmosphere during both events, corroborated by trends of radiative flux measurements. The estimated impact on the respiratory tract regions of the high levels of particulate matter during both Saharan dust intrusions showed high levels for the respirable fraction.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poeira/análise , Monitoramento Ambiental , Doenças Respiratórias/epidemiologia , Aerossóis/efeitos adversos , Aerossóis/análise , Humanos , Tamanho da Partícula , Material Particulado/efeitos adversos , Material Particulado/análise , Pólen , Doenças Respiratórias/induzido quimicamente , Estações do Ano , Espanha/epidemiologia , Luz Solar
5.
Environ Pollut ; 246: 336-345, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30562655

RESUMO

Aerosol black carbon (BC) is the second strongest contributor to global warming, after CO2, and it is linked to many adverse health effects. A sampling campaign of 15 months was carried out in León (Spain) in order to evaluate the scavenging of BC with an ensemble aethalometer-disdrometer. The aethalometer provides the concentration of equivalent black carbon (eBC), and the disdrometer, the raindrop size distribution. A total of seventy-five rain events were studied and in 73% of them there was an effective (eBCinitial > eBCfinal) scavenging, with a mean decrease of 48 ±â€¯37% in long rain events (>8 h) and 39 ±â€¯38% in short rain events. The scavenging of BC is strongly related to its source. Thus, the scavenging coefficient (SC) mean value of the BC from fossil fuel (eBCff) for short and long rain events was 5.1 10-5 and 1.3 10-5 s-1, respectively. For the BC from biomass burning (eBCbb), the SC values were 1.6 10-4 and 2.8 10-5 s-1 in short and long events, respectively. There was a significant positive correlation between the SC and the number of drops with diameters between 0.375 and 2.5 mm. Rain scavenging of eBC was analyzed depending on the air mass origin obtaining an effective scavenging for air masses from Atlantic, Arctic and Africa. A linear model (R2 = 0.72) was built to estimate the ΔeBC values with variables from an aethalometer, a disdrometer and a weather station: eBC concentration before rain, swept volume and precipitation accumulated. A Kolmogorov-Smirnov statistical test confirmed the goodness of fit of the model to the measured data.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental/métodos , Combustíveis Fósseis/análise , Fuligem/análise , Madeira/anatomia & histologia , Absorção Fisico-Química , Regiões Árticas , Espanha , Tempo (Meteorologia)
6.
Environ Sci Technol ; 52(11): 6714-6722, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29688717

RESUMO

Heavy fuel oil (HFO) particulate matter (PM) emitted by marine engines is known to contain toxic heavy metals, including vanadium (V) and nickel (Ni). The toxicity of such metals will depend on the their chemical state, size distribution, and mixing state. Using online soot-particle aerosol mass spectrometry (SP-AMS), we quantified the mass of five metals (V, Ni, Fe, Na, and Ba) in HFO-PM soot particles produced by a marine diesel research engine. The in-soot metal concentrations were compared to in-PM2.5 measurements by inductively coupled plasma-optical emission spectroscopy (ICP-OES). We found that <3% of total PM2.5 metals was associated with soot particles, which may still be sufficient to influence in-cylinder soot burnout rates. Since these metals were most likely present as oxides, whereas studies on lower-temperature boilers report a predominance of sulfates, this result implies that the toxicity of HFO PM depends on its combustion conditions. Finally, we observed a 4-to-25-fold enhancement in the ratio V:Ni in soot particles versus PM2.5, indicating an enrichment of V in soot due to its lower nucleation/condensation temperature. As this enrichment mechanism is not dependent on soot formation, V is expected to be generally enriched within smaller HFO-PM particles from marine engines, enhancing its toxicity.


Assuntos
Óleos Combustíveis , Material Particulado , Metais , Fuligem , Emissões de Veículos
7.
Sci Rep ; 7(1): 4926, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28706240

RESUMO

Carbonaceous particulate matter (PM), comprising black carbon (BC), primary organic aerosol (POA) and secondary organic aerosol (SOA, from atmospheric aging of precursors), is a highly toxic vehicle exhaust component. Therefore, understanding vehicle pollution requires knowledge of both primary emissions, and how these emissions age in the atmosphere. We provide a systematic examination of carbonaceous PM emissions and parameterisation of SOA formation from modern diesel and gasoline cars at different temperatures (22, -7 °C) during controlled laboratory experiments. Carbonaceous PM emission and SOA formation is markedly higher from gasoline than diesel particle filter (DPF) and catalyst-equipped diesel cars, more so at -7 °C, contrasting with nitrogen oxides (NOX). Higher SOA formation from gasoline cars and primary emission reductions for diesels implies gasoline cars will increasingly dominate vehicular total carbonaceous PM, though older non-DPF-equipped diesels will continue to dominate the primary fraction for some time. Supported by state-of-the-art source apportionment of ambient fossil fuel derived PM, our results show that whether gasoline or diesel cars are more polluting depends on the pollutant in question, i.e. that diesel cars are not necessarily worse polluters than gasoline cars.

8.
Faraday Discuss ; 200: 331-351, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28580998

RESUMO

Ambient measurements of PM1 aerosol chemical composition at Cabauw, the Netherlands, implicate higher ammonium concentrations than explained by the formation of inorganic ammonium salts. This additional particulate ammonium is called excess ammonium (eNH4). Height profiles over the Cabauw Experimental Site for Atmospheric Research (CESAR) tower, of combined ground based and airborne aerosol mass spectrometric (AMS) measurements on a Zeppelin airship show higher concentrations of eNH4 at higher altitudes compared to the ground. Through flights across the Netherlands, the Zeppelin based measurements furthermore substantiate eNH4 as a regional phenomenon in the planetary boundary layer. The excess ammonium correlates with mass spectral signatures of (di-)carboxylic acids, making a heterogeneous acid-base reaction the likely process of NH3 uptake. We show that this excess ammonium was neutralized by the organic fraction forming particulate organic ammonium salts. We discuss the significance of such organic ammonium salts for atmospheric aerosols and suggest that NH3 emission control will have benefits for particulate matter control beyond the reduction of inorganic ammonium salts.

9.
Sci Total Environ ; 560-561: 225-32, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27101459

RESUMO

Prescribed burnings are conducted in Queensland each year from August until November aiming to decrease the impact of bushfire hazards and maintain the health of vegetation. This study reports chemical characteristics of the ambient aerosol, with a focus on source apportionment of the organic aerosol (OA) fraction, during the prescribed biomass burning (BB) season in Brisbane 2013. All measurements were conducted within the International Laboratory for Air Quality and Health (ILAQH) located in Brisbane's Central Business District. Chemical composition, degree of ageing and the influence of BB emission on the air quality of central Brisbane were characterized using a compact Time of Flight Aerosol Mass Spectrometer (cToF-AMS). AMS loadings were dominated by OA (64%), followed by, sulfate (17%), ammonium (14%) and nitrates (5%). Source apportionment was applied on the AMS OA mass spectra via the multilinear engine solver (ME-2) implementation within the recently developed Source Finder (SoFi) interface. Six factors were extracted including hydrocarbon-like OA (HOA), cooking-related OA (COA), biomass burning OA (BBOA), low-volatility oxygenated OA (LV-OOA), semivolatile oxygenated OA (SV-OOA), and nitrogen-enriched OA (NOA). The aerosol fraction that was attributed to BB factor was 9%, on average over the sampling period. The high proportion of oxygenated OA (72%), typically representing aged emissions, could possess a fraction of oxygenated species transfored from BB components on their way to the sampling site.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Incêndios , Queensland
10.
J Mass Spectrom ; 50(4): 662-71, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26149110

RESUMO

The mass spectral signatures of airborne bacteria were measured and analyzed in cloud simulation experiments at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) facility. Suspensions of cultured cells in pure water were sprayed into the aerosol and cloud chambers forming an aerosol which consisted of intact cells, cell fragments and residual particles from the agar medium in which the bacteria were cultured. The aerosol particles were analyzed with a high-resolution time-of-flight aerosol mass spectrometer equipped with a newly developed PM2.5 aerodynamic lens. Positive matrix factorization (PMF) using the multilinear engine (ME-2) source apportionment was applied to deconvolve the bacteria and agar mass spectral signatures. The bacteria mass fraction contributed between 75 and 95% depending on the aerosol generation, with the remaining mass attributed to agar. We present mass spectra of Pseudomonas syringae and Pseudomonas fluorescens bacteria typical for ice-nucleation active bacteria in the atmosphere to facilitate the distinction of airborne bacteria from other constituents in ambient aerosol, e.g. by PMF/ME-2 source apportionment analyses. Nitrogen-containing ions were the most salient feature of the bacteria mass spectra, and a combination of C4 H8 N(+) (m/z 70) and C5 H12 N(+) (m/z 86) may be used as marker ions.


Assuntos
Aerossóis/química , Bactérias/química , Espectrometria de Massas/métodos , Proteínas de Bactérias/análise , Proteínas de Bactérias/química , Elétrons , Gelo
11.
Nat Commun ; 5: 3749, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24825457

RESUMO

Fossil fuel-powered vehicles emit significant particulate matter, for example, black carbon and primary organic aerosol, and produce secondary organic aerosol. Here we quantify secondary organic aerosol production from two-stroke scooters. Cars and trucks, particularly diesel vehicles, are thought to be the main vehicular pollution sources. This needs re-thinking, as we show that elevated particulate matter levels can be a consequence of 'asymmetric pollution' from two-stroke scooters, vehicles that constitute a small fraction of the fleet, but can dominate urban vehicular pollution through organic aerosol and aromatic emission factors up to thousands of times higher than from other vehicle classes. Further, we demonstrate that oxidation processes producing secondary organic aerosol from vehicle exhaust also form potentially toxic 'reactive oxygen species'.


Assuntos
Aerossóis/análise , Poluição do Ar/análise , Cidades , Motocicletas , Material Particulado/análise , Espécies Reativas de Oxigênio/análise , Emissões de Veículos/análise , Ásia , Europa (Continente) , Combustíveis Fósseis , Humanos
12.
Environ Sci Pollut Res Int ; 21(1): 252-67, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24046224

RESUMO

In the middle of Europe, the Alps form a geographical and meteorological trap for atmospheric pollutants including volatile and semi-volatile organic compounds emitted in the surrounding lowlands. This is due to their barrier effects, high precipitation rates, and low ambient temperatures. Also the pollutants emitted in the cities inside the Alps spread in the region depending on orographic and meteorological conditions. Although a number of studies on the distribution and effect of pollutants in the Alps has been published, comprehensive information on potential hazards, and ways to improve this sensible environment are lacking. This opinion paper is the result of a discussion during the Winterseminar of the AlpsBioCluster project in Munich. It summarizes the current literature and presents some case studies on local pollution sources in the Alps, and the possibility of using biomonitoring techniques to assess critical pollution loads and distributions.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Atmosfera/química , Cidades , Clima , Monitoramento Ambiental , França , Substâncias Perigosas/análise , Suíça , Compostos Orgânicos Voláteis/análise
13.
Environ Sci Technol ; 46(20): 11418-25, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22970884

RESUMO

Primary emissions from a log wood burner and a pellet boiler were characterized by online measurements of the organic aerosol (OA) using a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and of black carbon (BC). The OA and BC concentrations measured during the burning cycle of the log wood burner, batch wise fueled with wood logs, were highly variable and generally dominated by BC. The emissions of the pellet burner had, besides inorganic material, a high fraction of OA and a minor contribution of BC. However, during artificially induced poor burning BC was the dominating species with ∼80% of the measured mass. The elemental O:C ratio of the OA was generally found in the range of 0.2-0.5 during the startup phase or after reloading of the log wood burner. During the burnout or smoldering phase, O:C ratios increased up to 1.6-1.7, which is similar to the ratios found for the pellet boiler during stable burning conditions and higher than the O:C ratios observed for highly aged ambient OA. The organic emissions of both burners have a very similar H:C ratio at a given O:C ratio and therefore fall on the same line in the Van Krevelen diagram.


Assuntos
Poluentes Atmosféricos/análise , Culinária/instrumentação , Material Particulado/análise , Fuligem/análise , Poluição do Ar/estatística & dados numéricos , Biomassa , Culinária/estatística & dados numéricos , Monitoramento Ambiental , Madeira
14.
Sci Total Environ ; 427-428: 175-90, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22554530

RESUMO

Mean annual biomass burning contributions to the bulk particulate matter (PM(X)) load were quantified in a southern-European urban environment (Barcelona, Spain) with special attention to typical Mediterranean winter and summer conditions. In spite of the complexity of the local air pollution cocktail and the expected low contribution of biomass burning emissions to PM levels in Southern Europe, the impact of these emissions was detected at an urban background site by means of tracers such as levoglucosan, K(+) and organic carbon (OC). The significant correlation between levoglucosan and OC (r(2)=0.77) and K(+) (r(2)=0.65), as well as a marked day/night variability of the levoglucosan levels and levoglucosan/OC ratios was indicative of the contribution from regional scale biomass burning emissions during night-time transported by land breezes. In addition, on specific days (21-22 March), the contribution from long-range transported biomass burning aerosols was detected. Quantification of the contribution of biomass burning aerosols to PM levels on an annual basis was possible by means of the Multilinear Engine (ME). Biomass burning emissions accounted for 3% of PM(10) and PM(2.5) (annual mean), while this percentage increased up to 5% of PM(1). During the winter period, regional-scale biomass burning emissions (agricultural waste burning) were estimated to contribute with 7±4% of PM(2.5) aerosols during night-time (period when emissions were clearly detected). Long-range transported biomass burning aerosols (possibly from forest fires and/or agricultural waste burning) accounted for 5±2% of PM(2.5) during specific episodes. Annually, biomass burning emissions accounted for 19%-21% of OC levels in PM(10), PM(2.5) and PM(1). The contribution of this source to K(+) ranged between 48% for PM(10) and 97% for PM(1) (annual mean). Results for K(+) from biomass burning evidenced that this tracer is mostly emitted in the fine fraction, and thus coarse K(+) could not be taken as an appropriate tracer of biomass burning.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Incêndios , Glucose/análogos & derivados , Potássio/análise , Aerossóis/análise , Biomarcadores/análise , Biomassa , Cidades , Monitoramento Ambiental , Glucose/análise , Modelos Biológicos , Tamanho da Partícula , Material Particulado/análise , Estações do Ano , Espanha , Madeira
15.
Sci Total Environ ; 427-428: 191-202, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22572211

RESUMO

The chemical composition and sources of ambient particulate matter (PM) in Switzerland were studied. PM(1) and PM(10) samples were collected in winter and summer at an urban background site in Zurich and a rural background site in Payerne. Concentrations of major and trace elements, NO(3)(-), SO(4)(2-), NH(4)(+), organic and elemental carbon were determined. A subsequent Positive Matrix Factorization (PMF) analysis was performed. PM(10) and PM(1) concentrations varied similarly at both sites, with average PM(10) concentrations 24-25 µg/m(3) and 13-14 µg/m(3) in winter and summer, respectively, and average PM(1) concentrations 12-17 µg/m(3) and 6-7 µg/m(3). The influence of local sources was found to be higher in winter. PM was dominated by nitrate and organic matter in winter, and by mineral matter and organic matter in summer. Trace element concentrations related to road traffic (Zn, Cu, Sb, Sn) were higher at Zurich. Concentrations of Tl and Cs, attributed to the influence of a glass industry, were higher at Payerne. The elements mainly present in the coarse fraction were those related to mineral matter and brake and tyre abrasion (Cu, Mn, Ti, Sb, Sr, Bi, Li, La, Nd), and those in the fine fraction were related to high temperature anthropogenic processes (Pb, As, Cd, Tl, Cs). Common PM(1) and PM(1-10) sources identified by PMF were: ammonium nitrate, present in winter, negligible in summer; ammonium sulfate+K(biomass burning)+road traffic; and road traffic itself, related to exhaust emissions in PM(1) and to road dust resuspension in PM(1-10). Size-fraction specific sources were: a PM(1) glass industry source characterized by Cs, Tl, Rb, Li and Na, only present in Payerne; a PM(1) background source characterized by V, Ni, sulfate and Fe; two PM(1-10) mineral-related sources, with higher contribution in summer; a PM(1-10) salt source; and a PM(1-10) organic source, with higher contribution in summer, attributed to bioaerosols.


Assuntos
Poluentes Atmosféricos/análise , Tamanho da Partícula , Material Particulado/análise , Cidades , Monitoramento Ambiental , Indústrias , Estações do Ano , Suíça , Oligoelementos/análise , Emissões de Veículos/análise
16.
Anal Chim Acta ; 717: 28-38, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22304813

RESUMO

Two-stroke mopeds are a popular and convenient mean of transport in particular in the highly populated cities. These vehicles can emit potentially toxic gaseous and aerosol pollutants due to their engine technology. The legislative measurements of moped emissions are based on offline methods; however, the online characterization of gas and particulate phases offers great possibilities to understand aerosol formation mechanism and to adapt future emission standards. The purpose of this work was to study the emission behavior of two mopeds complying with different European emission standards (EURO-1 and EURO-2). A sophisticated set of online analyzers was applied to simultaneously monitor the gas phase and particulate phase of exhaust on a real time basis. The gaseous emission was analyzed with a high resolution Fourier transform infrared spectrometer (FTIR; nitrogen species) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-ToF-MS; polycyclic aromatic hydrocarbons: PAH), whereas the particulate phase was chemically characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS; organic, nitrate and chloride aerosol) and a multiangle absorption photometer (MAAP; black carbon). The physical characterization of the aerosol was carried out with a condensation particle counter (CPC; particle number concentration) and a fast mobility particle sizer (FMPS; size distribution in real time). In order to extract underlying correlation between gas and solid emissions, principal component analysis was applied to the comprehensive online dataset. Multivariate analysis highlighted the considerable effect of the exhaust temperature on the particles and heavy PAH emissions. The results showed that the after-treatment used to comply with the latest EURO-2 emission standard may be responsible for the production of more potentially harmful particles compared to the EURO-1 moped emissions.

17.
Anal Chem ; 83(1): 67-76, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21126058

RESUMO

The European Commission recently established a novel test facility for heavy-duty vehicles to enhance more sustainable transport. The facility enables the study of energy efficiency of various fuels/scenarios as well as the chemical composition of evolved exhaust emissions. Sophisticated instrumentation for real-time analysis of the gas and particulate phases of exhaust has been implemented. Thereby, gas-phase characterization was carried out by a Fourier transform infrared spectrometer (FT-IR; carbonyls, nitrogen-containing species, small hydrocarbons) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-TOFMS; monocyclic and polycyclic aromatic hydrocarbons). For analysis of the particulate phase, a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS; organic matter, chloride, nitrate), a condensation particle counter (CPC; particle number), and a multiangle absorption photometer (MAAP; black carbon) were applied. In this paper, the first application of the new facility in combination with the described instruments is presented, whereby a medium-size truck was investigated by applying different driving cycles. The goal was simultaneous chemical characterization of a great variety of gaseous compounds and particulate matter in exhaust on a real-time basis. The time-resolved data allowed new approaches to view the results; for example, emission factors were normalized to time-resolved consumption of fuel and were related to emission factors evolved during high speeds. Compounds could be identified that followed the fuel consumption, others showed very different behavior. In particular, engine cold start, engine ignition (unburned fuel), and high-speed events resulted in unique emission patterns.

18.
Sci Total Environ ; 408(21): 5106-16, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20692024

RESUMO

European regulation for Euro 5/6 light duty emissions introduced the measurement of non-volatile particles with diameter >23 nm. The volatile phase is removed by using a heated dilution stage (150 degrees C) and a heated tube (at 300-400 degrees C). We investigated experimentally the removal efficiency for volatile species of the specific protocol by conducting measurements with two Euro 3 diesel light duty vehicles, a Euro 2 moped, and a Euro III heavy duty vehicle with the system's heaters on and off. The particle number distributions were measured with a Scanning Mobility Particle Sizer (SMPS) and a Fast Mobility Particle Sizer (FMPS). An Aerosol Mass Spectrometer (AMS) was used to identify the non-refractory chemical composition of the particles. A Multi-Angle Absorption Photometer (MAAP) was used to measure the black carbon concentration. The results showed that the condensed material in the accumulation mode (defined here as particles in the diameter range of approximately 50-500 nm) was removed with an efficiency of 50-90%. The (volatile) nucleation mode was also completely evaporated or was decreased to sizes <23 nm; thus these particles wouldn't be counted from the particle counter, indicating the robustness of the protocol.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental/instrumentação , Material Particulado/análise , Emissões de Veículos/prevenção & controle , Aerossóis/química , Poluentes Atmosféricos/química , Poluição do Ar/legislação & jurisprudência , Meio Ambiente , Recuperação e Remediação Ambiental/legislação & jurisprudência , Regulamentação Governamental , Material Particulado/química , Emissões de Veículos/análise
19.
Environ Sci Technol ; 44(17): 6601-7, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20684503

RESUMO

This study reports the potential toxicological impact of particles produced during biomass combustion by an automatic pellet boiler and a traditional logwood stove under various combustion conditions using a novel profluorescent nitroxide probe, BPEAnit. This probe is weakly fluorescent but yields strong fluorescence emission upon radical trapping or redox activity. Samples were collected by bubbling aerosol through an impinger containing BPEAnit solution, followed by fluorescence measurement. The fluorescence of BPEAnit was measured for particles produced during various combustion phases: at the beginning of burning (cold start), stable combustion after refilling with the fuel (warm start), and poor burning conditions. For particles produced by the logwood stove under cold-start conditions, significantly higher amounts of reactive species per unit of particulate mass were observed compared to emissions produced during a warm start. In addition, sampling of logwood burning emissions after passing through a thermodenuder at 250 degrees C resulted in an 80-100% reduction of the fluorescence signal of the BPEAnit probe, indicating that the majority of reactive species were semivolatile. Moreover, the amount of reactive species showed a strong correlation with the amount of particulate organic material. This indicates the importance of semivolatile organics in particle-related toxicity. Particle emissions from the pellet boiler, although of similar mass concentration, were not observed to lead to an increase in fluorescence signal during any of the combustion phases.


Assuntos
Incêndios , Corantes Fluorescentes/química , Óxidos de Nitrogênio/química , Material Particulado/química , Madeira/metabolismo , Peso Molecular , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Fluorescência , Temperatura
20.
Science ; 326(5959): 1525-9, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20007897

RESUMO

Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework describing the atmospheric evolution of OA that is constrained by high-time-resolution measurements of its composition, volatility, and oxidation state. OA and OA precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. Our model framework captures the dynamic aging behavior observed in both the atmosphere and laboratory: It can serve as a basis for improving parameterizations in regional and global models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...